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40 if (info->s->concurrent insert)
41 rw rdlock(&info->s->
key root lock[inx]);

42 changed= mi test if changed(info);
43 if (!'flag) {
44 switch(info->s->
keyinfo[inx].key alg) {
/* 37 lines omitted */

82 }
|84 if (info->s->concurrent insert) {|
85 if ('error) {
86 while (...) {
/* 10 lines omitted */
97 1
98 1

99 rw _unlock (&info->s->
key root lock[inx]);

100 }
[] Conditional Locks

FIG. 4
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SYSTEM AND METHODS FOR PRECISE
MICROPROCESSOR EVENT COUNTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of, and
claims priority to, U.S. patent application Ser. No. 13/273,
035, entitled “SYSTEM AND METHODS FOR PRECISE
MICROPROCESSOR EVENT COUNTING,” and filed
Oct. 13, 2011, which claims priority to, and the benefit of,
U.S. Provisional Patent Application No. 61/392,880, filed on
Oct. 13, 2010, the contents of all of which are hereby
incorporated by reference in their entireties.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
Grant No. FA 9550-09-1-0389 awarded by the Air Force
Office of Scientific Research (AFOSR). The government has
certain rights in the invention.

BACKGROUND

On-chip performance counters play a vital role in com-
puter architecture research due to their ability to quickly
provide insights into application behaviors that are time
consuming to characterize with traditional methods. On-chip
performance counters offer a convenient alternative to guide
computer architecture researchers through the challenging,
evolving application landscape. Performance counters mea-
sure microarchitectural events at native execution speed and
can be used to identify bottlenecks in any real-world appli-
cation. These bottlenecks can then be captured in
microbenchmarks and used for detailed microarchitectural
exploration through simulation.

The usefulness of modern performance counters, how-
ever, is limited by inefficient techniques used today to access
them. Current access techniques rely on imprecise sampling
or heavyweight kernel interaction forcing users to choose
between precision or speed and thus restricting the use of
performance counter hardware.

Recently, some hardware vendors have increased cover-
age, accuracy and documentation of performance counters
making them more useful than before. For instance, about
400 events can be monitored on a modern Intel chip,
representing a three-fold increase in a little over a decade.
Despite these improvements, it is still difficult to realize the
full potential of hardware counters, because the costly
methods used to access these counters perturb program
execution or trade overhead for loss in precision.

Conventional tools for accessing performance counters
attempt to read performance counters via hardware inter-
rupts or heavyweight kernel calls. An inherent downside of
kernel calls is that they interrupt normal program execution
and slow down the program thereby affecting the quantity
being measured. To minimize these perturbations, most
profilers resort to occasionally reading these counters and
extrapolating full program statistics from the sampled mea-
surements. While this extrapolation is necessarily imprecise,
the error introduced by the process has been acceptable
when profiling hotspots in serial programs.

Traditional sampling, however, has fundamental incom-
patibilities for parallel programs which have become com-
monplace with the availability of multi-cores. Traditional
sampling methods are likely to miss small critical sections
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because they do not constitute the hottest regions of the
code. Amdahl’s law, however, provides that optimizing
critical sections is necessary to ensure scalability, even if the
time spent in critical sections is relatively low. Moreover,
irrespective of the size, it is not easy to correctly monitor
critical sections. Performance characterization of parallel
programs with performance counters calls for simple, light-
weight access methods that can enable precise performance
measurement for both hot and cold code regions.

A common feature of many of the counter designs in early
processors—and a source of major frustration to date—is
that all of these counters were accessible only in the privi-
leged mode, thus requiring a high overhead kernel call for
access. This problem was mitigated to an extent in the MIPS
R10000, which included support for both user-level and
kernel-level access to the performance counters. Later x86
machines from Intel and AMD have included similar con-
figurable support. However, the software used to access the
counters (kernel and libraries) often do not enable user space
counter reads by default, likely to allow them to mask the
complexity of counter virtualization behind the kernel inter-
face.

Hand in hand with the hardware improvements, many
software tools have been developed over the years to obtain
information from performance counters. These tools can
either pull data from the performance counters on demand at
predetermined points in the program or operate upon data
pushed by the performance counter during externally-trig-
gered sampling interrupts. An open source example is the
Performance API (PAPI) which was created in 1999 to
provide an standard interface to performance counters on
different machines. With these conventional tools, users can
extrapolate measurements obtained from samples collected
either at predetermined points in the program or during
sampling interrupts triggered by user specified conditions
e.g., N cache misses. A general drawback to these sampling
methods is that it introduces error inversely proportional to
the sampling frequency. As a result, short or cold regions of
interest are difficult to measure precisely.

Conventional performance monitoring tools require that
the performance counters be read by the kernel, requiring
heavyweight system calls to obtain precise measurements.
Unlike these conventional tools, the access techniques
described herein provide both precise and low overhead
measurements by allowing userspace counter access. We
compare the measurements to conventional techniques
PAPI-C and perf_event in the discussion below and show
that by enabling userspace access, the disclosed embodi-
ments introduce less perturbation than PAPI, and decreased
overheads enable accurate, precise profiling of long running
or interactive production applications.

SUMMARY

We describe herein new methods that enable precise,
lightweight interfacing to on-chip performance counters.
These low-overhead techniques allow precise reading of
virtualized counters in low tens of nanoseconds, which is
one to two orders of magnitude faster than current access
techniques. Further, these tools provide several fresh
insights on the behavior of modern parallel programs such as
MySQL and Firefox, which were previously obscured (or
impossible to obtain) by existing methods for characteriza-
tion. Based on case studies with new access methods, we
discuss seven implications for computer architects in the
cloud era and three methods for enhancing hardware coun-
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ters further. Taken together, these observations have the
potential to open up new avenues for architecture research.

The precise access method, embodied in an x86-Linux
tool, referred to herein as “Lightweight Microarchitectural
Toolkit (LiMiT),” requires less than 12 ns per access and is
over 90x faster than PAPI-C and 23x faster than Linux’s
perf-event, tools that provides similar functionality. LiMiT
is a patch for the Linux kernel and userland library which
enables direct userspace access to Intel’s hardware perfor-
mance counters for lightweight, precise performance mea-
surements.

In one aspect, the disclosed embodiments provide a
method and a corresponding system and software for per-
forming precise microprocessor performance counter read-
ings. The method includes detecting a swap of a monitored
process being executed by the microprocessor. The method
further includes reading, if the swap of the monitored
process is detected, a value of a performance counter,
wherein the value of the performance counter is output to a
counter output register. The value of the performance coun-
ter is stored in a first memory location. The method further
includes determining whether the value of the performance
counter exceeds a defined overtlow threshold and detecting
a swap back to the monitored process. In response to the
detected swap back to the monitored process, the method
includes the following steps. If the value read from the
performance counter does not exceed the defined overflow
threshold, the value of the performance counter stored in the
first memory location is restored to the performance counter.
If the value read from the performance counter exceeds the
defined overflow threshold, the performance counter is set to
zero and the value of the performance counter stored in the
first memory location is used to increment an overflow
memory location. Also, if the value read from the perfor-
mance counter exceeds the defined overflow threshold, the
method includes detecting at least one performance counter
reading instruction executed by the monitored process and in
response to the detected at least one performance counter
reading instruction, setting the counter output register to
Zero.

In one aspect, the disclosed embodiments provide a
method and a microprocessor for executing destructive
performance counter reads. The method includes loading in
an instruction pointer register of the microprocessor a value
indicating a destructive performance counter read instruc-
tion. The method further includes reading a parameter from
a first register (ecx) to select a performance counter to read
for the destructive performance counter read instruction and
reading a value of the selected performance counter indi-
cated by the parameter read from the first register (ecx). The
method further includes loading the value read from the
selected performance counter into at least a second register
(eax:edx) and setting the selected performance counter to
Zero.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the
disclosed subject matter will be apparent upon consideration
of the following detailed description, taken in conjunction
with accompanying drawings, in which like reference char-
acters refer to like parts throughout, and in which:

FIG. 1(a) shows a five-instruction counter read sequence
(dotted box) embedded as part of a monitored program
execution.
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FIG. 1(b) shows modifications (depicted as highlighted
boxes) that provide detection of interrupted counter reads
and fixes for double counting errors.

FIG. 2 is a more detailed diagram depicting the process
shown in FIG. 1(b) for handling interrupts, detecting inter-
rupted counter reads, and adjusting for double-counting
errors.

FIG. 3 depicts a method for executing destructive perfor-
mance counter reads in a microprocessor.

FIG. 4 shows a code excerpt from MySQL.

FIG. 5(a) shows a typical usage example for a read time
stamp counter (rdtsc) instruction on x86 architectures.

FIG. 5(b) shows the effects of process isolation in LiMiT,
which helps prevent other threads and processes from
directly affecting event counts.

FIGS. 6(a) and 6(b) show a comparison of synchroniza-
tion and critical section timing for various popular applica-
tions and the PARSEC benchmark suite along with execu-
tion times for MySQL.

FIGS. 7A-F include a set of histograms of synchroniza-
tion overheads and critical section times for several appli-
cations.

FIGS. 8(a), 8(b), and 8(c) show characteristics of various
user space and kernel space microarchitectural events occur-
ring in categories of library functions.

FIG. 9 shows cycles per instruction for various library
functions executed by MySQL.

FIG. 10 shows L3 cache misses in various dynamically
linked library functions.

FIGS. 11(a), 11(b), and 11(c) show a history of synchro-
nization in MySQL.

FIG. 12 is a table (marked as Table 1) providing LiMiT
speedup data.

FIG. 13 is a table (marked as Table 2) providing locking-
related average data.

DETAILED DESCRIPTION

The performance of a user application may be monitored
by periodically reading a performance counter of the micro-
processor while the application is being executed. Such
counter readings may be analyzed to determine, for
example, which specific sections of the program code may
be acting as bottlenecks that slow the execution of the entire
application. The performance counter of a microprocessor is
a sequential counter which is incremented as each micro-
architectural “event” occurs in the microprocessor, e.g., the
execution of an operation or instruction. The reading of the
performance counter may be done by code sections which
are inserted into the application itself at determined loca-
tions, e.g., before and after sections of the program code
deemed to be “critical”.

As discussed above, the key to performing low-overhead
performance counter reads is to avoid making kernel calls
(i.e., system calls) by allowing user applications to directly
read the performance counters. As we discuss below in
further detail, the direct reading of the performance counter
may be done using a method which includes: (1) setting up
the performance counter for direct access by user applica-
tions; (2) inserting code to perform the reading of the
performance counter at determined locations in the program
code to be monitored; (3) handling counter overflow con-
ditions; and (4) handling situations in which an interrupt
occurs while the performance counter is being read. We also
compare the overheads of the performance counter access
method to conventional methods.
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Before a user application can directly access the perfor-
mance counter, it may be necessary to take steps to enable
the access. Enabling access by user applications, i.e., user-
space access, to the performance counters may involve the
following:

1. Stock Linux kernels do not allow direct user space
access to performance counters. As a simple first step, we set
the configuration bit (an MSR in x86) to allow user access.

2. Performance counters cannot be directly configured to
monitor events of interest (e.g., instructions retired) from
userspace. We add a system call to the Linux kernel to
configure the counters. Since most applications are likely to
set up these counters once or few times per program we do
not take any special measures to optimize this step.

3. Enable process isolation by “virtualizing” the operation
of the performance counter hardware, allowing multiple
programs to use one hardware instance of the performance
counters. The virtualization involves swapping and storing
counter values as each different context is being executed by
the processor. Without this support, programs would read
events which occurred while other programs were execut-
ing, resulting in incorrect results and also opening up
side-channels that can be used to infer information about
program execution.

In theory, virtualization support should be as simple
saving and restoring the performance counters during con-
text swaps just like any other register. However, we need to
deal with the possibility of performance counters overflow-
ing. For example, Intel 48-bit counters can overflow every
26 hours, so overflows are likely for long running applica-
tions. Additionally, Intel chips prior to the “Sandy Bridge”
chip configuration allowed only 32-bit write operations to
the counters, so after only 1.4 seconds the kernel may find
itself unable to correctly restore the counter when a process
is swapped back in. The techniques for addressing overtlow
problems are discussed below.

Once direct access to the performance counter is enabled
in the manner discussed above, it will be possible for the
user application to read performance counter as it is
executed. The direct reading of the performance counter is
done by inserting code to perform the reading at determined
locations in the program code to be monitored. Also, the
kernel (i.e., the kernel patched according the disclosed
embodiments) executes special processes to handle counter
overflow and interrupts which occur during counter reads.

FIG. 1 presents a performance counter read sequence 100
(see dotted box on left-hand side of figure) embedded as part
of regular program execution. As shown, program execution
can be interrupted when the program is executing uninstru-
mented code (see 105) or when executing userspace code for
reading counters (see 110). Interrupts 110 received during
the direct counter reads require special handling to avoid
“double-counting” errors, as discussed in further detail
below. The right-hand side of FIG. 1 depicts a process for
handling interrupts, including special modifications (see
highlighted boxes) which provide detection of interrupted
counter reads and fixes for double-counting errors. This
process is also depicted in a more detailed manner in FIG.
2.

The following is an example of a sequence of assembly
language instructions 100 which can be used to read the
performance counter:

mov $0, % ecx (instruct subsequent rdpme instruction

to read counter number 0)
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-continued

rdpme (read performance monitoring counter; reads
48-bit register into two 32-bit registers,

eax and edx which are aliases for the lower
32-bits of the 64-bit rax and rdx registers)
(shift register rdx by 32 bits to the left

to make room for the value in the register
eax, a.k.a. rax)

(OR operation to combine the two registers,
rax and rdx; result is 48 bits of counter)
(reads overflow value from memory location
ovfl which is controlled by kernel; must
add this counter reading to get actual

value of counter)

shl $32, % rdx

orq % rax, % rdx

addq ovfl, % rdx

Thus, when a process seeks to read the performance
counter it must get the current value via rdpme and then
fetch and add the contents of the overflow value in memory.
However, this set of instructions must be executed atomi-
cally, i.e., without interruption. If an interrupt and overtlow
occurs during the processing of the counter reading instruc-
tions (e.g., before the memory fetch but after the rdpmc),
then the value read will have an error equal to the previous
value of the counter. This occurs because, in this example,
the kernel has zeroed the already-read counter register and
incremented the as-yet-unread overtlow variable (ovfl) at the
time of the interrupt.

As shown in FIGS. 1 and 2, one common cause of
interrupts is a process swap, which occurs when another
program (i.e., a program other than the user application
being monitored) gets scheduled in for execution by the
processor, e.g., for 10-20 ms. When the patched kernel
detects that a swap is to occur 115, 205, the kernel reads
counter and saves it 210. The other program is then executed
for some period of time 120, after which time the original
program is swapped back into the processor 125, 215. When
the user application is swapped back 125, 215, then the
kernel attempts to restore the counter to its original value. In
this manner, the kernel can ensure that the performance
counter is not affected by the execution of other programs.

An overflow problem 130 can arise in certain types of
hardware. For example, in certain Intel processors, the
counter is 48 bits, but the hardware only allows restoring of
31 bits to the counter. Therefore, ifit is determined (see 220)
that the value of the counter is greater than a threshold, e.g.,
23!, then the kernel must (see 130, 225) restore a value of
zero to the counter and store the actual counter value in the
ovfl memory location (which is a 64-bit memory location).
If, on the other hand, the counter value to be restored is less
than 23!, then the value can be restored directly to the
counter when the user application is swapped back into
execution 230.

In the event of an overflow condition, the kernel must also
check to see if the swap interrupt occurred while the user
application was attempted to read the performance counter
(see 135, 235). In other words, the kernel must determine
whether the user application was executing the specific set
of instructions to read the performance counter when the
interrupt occurred. As noted above, these instructions must
be executed atomically in order to perform a counter read
without producing overflow handling errors, e.g., double-
counting errors, as described below.

The condition in which an interrupt occurs during an
attempted counter read can be detected, for example, by
reading the instruction pointer (i.e., the instruction register)
to detect execution of the performance counter read
sequence, which, in this example, is a five-instruction
sequence. If a counter read is detected, then an “atomicity
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violation” is indicated, i.e., the interrupt occurred while a
counter read was being attempted.

If an interrupt, e.g., due to a program swap, occurs just
before the counter is read by the user application, then no
error arises, because the counter would read zero (because it
is zeroed by the kernel when the swap occurs) and the
overflow memory location (ovfl) would contain the correct
overflow value. Therefore, adding the register value and the
overflow memory location value results in the correct coun-
ter reading.

However, if an interrupt occurs after the counter is read by
the user application, then the user application may read the
same value both from the counter and the overflow memory
location (ovfl) and then add these two values together. This
would result in a counter reading which is twice the actual
counter value, i.e., a double-counting error. This situation
must be corrected by the error handling routine.

Therefore, in the event that an atomicity violation is
detected, the error handling routine zeros out the registers
storing the counter value 140, 240, i.e., registers rdx and rax,
before returning to execution of the user application, instead
of restoring the original values read from these registers at
the beginning of the program swap. The user application will
then read the zeroed registers rdx and rax (which will match
the zeroed performance counter) and add them to the value
stored in the overflow memory location (ovfl), which result
in a correct counter reading. If there no atomicity violation
is detected, then there is a return to the monitored process
145, 245 without zeroing the counter output registers.

As explained above, we work around overflows by detect-
ing overflow conditions and accumulating the overflowed
values in user memory. When a process wants to read a
performance counter it must get the current value via rdpme
then fetch and add the contents of the overflow value in
memory. However, as discussed above, this set of instruc-
tions must be executed atomically, i.e., without interruption.

Destructive Performance Counter Reads

When characterizing code segments using performance
counter reading, a difference in counts between two points
in the program is often required. A destructive read instruc-
tion—one that zeros the counter after reading it—could
eliminate the currently necessary subtraction in many cases
when counters are used. A microprocessor that implements
a destructive performance counter read instruction could
therefore greatly improve the efficiency of program moni-
toring.

A microprocessor could be designed to perform destruc-
tive performance counter reads by making certain modifi-
cations to the conventional instruction set. These modifica-
tions would include adding a destructive performance
counter read command, which could be designated as “rdp-
mcd.” Assuming that the destructive performance counter
read is operating on a 48-bit performance counter and the
reading is output into 32-bit registers (as discussed above
with the conventional, non-destructive read command
“rdpmc”), the processor would execute the destructive per-
formance counter read in the following manner

a) the microprocessor’s instruction pointer register points

to destructive read instruction;

b) the microprocessor reads the ecx register to determine

which performance counter to read and zero;

¢) the microprocessor reads the contents of selected

performance counter register and loads the lower 32
bits into the eax register and the upper 16 bits into the
edx register; and

d) the microprocessor sets the selected performance reg-

ister to zero.
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A more general embodiment of this process is depicted in
FIG. 3, which shows steps of: loading instruction pointer
register with value indicating destructive performance coun-
ter read instruction 305; reading parameter from first register
to select performance counter to read for destructive per-
formance counter read instruction 310; reading value of
selected performance counter indicated by parameter read
from first register 315; loading value read from selected
performance counter into second register 320; and setting
selected performance counter to zero 325.

The following is an example of a sequence of assembly
language instructions which can be used to read the perfor-
mance counter using a destructive read command, which
requires an additional step of zeroing the overflow memory
location:

mov $0, % ecx (instruct subsequent rdpmed instruction

to read counter number 0)

(destructive read performance monitoring

counter; reads 48-bit register into two

32-bit registers, eax and edx which are

aliases for the lower 32-bits of the 64-bit

rax and rdx registers; counter is zeroed)

(shift register rdx by 32 bits to the left

to make room for the value in the register

eax, a.k.a. rax)

(OR operation to combine the two registers,

rax and rdx; result is 48 bits of counter)

(reads overflow value from memory location

ovfl which is controlled by kernel; must add

this counter reading to get actual value of counter)
(zeros overflow memory location ovfl; the
destructive read zeros the counter and the
overflow is semantically an extension to the
counter. Therefore when rdpmed zeros the counter,
the overflow must also be zeroed otherwise

it would no longer properly correspond to the counter)

rdpmed

shl $32, % rdx

orq % rax, % rdx

addq ovfl, % rdx

mov $0, ovfl

As with the non-destructive read, the kernel must handle
process swaps and counter overflow conditions caused by
the limitations of the register sizes and the bit limit on
restoring the counter. For the destructive counter read, this
process would be the same as described above and as shown
in FIG. 1.

Preserving Atomicity

Two solutions to ensure atomic execution, turning off
interrupts or protecting the critical section with a lock,
cannot work in this context. If we disable interrupts, the
executing process would never be swapped out and could
starve other applications; allowing a user process to disable
external interruption is dangerous. Locking is even more
problematic. The algorithm requires the kernel to update the
user space memory location that keeps track of the perfor-
mance counter values. To do this the kernel must obtain a
lock when the process is being swapped back in. However,
if the process holds the lock, then the kernel cannot continue
and the process will never resume to release the lock. In this
situation deadlock is guaranteed.

Linux kernel interfaces such as Perfmon2 and perf_event
deal with this problem by placing all sensitive code in the
kernel where techniques like disabling interrupts can operate
normally. By doing so, however, they add significant over-
head to counter reads in the form of system calls to access
counters.

To solve this problem, we use the approach depicted in
FIGS. 1 and 2, as discussed above. We speculatively assume
that there will be no atomicity violation, but build detection
and error handling into the kernel code for cases where such
events happen. With this approach, there is no additional
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overhead added to counter reading code in user space and
overhead is only incurred on relatively infrequent counter
overflows. To detect whether or not an application is in the
middle of a counter read during a counter overflow we
simply check the pattern of instructions before the process
was interrupted (pointed to by the process’ instruction
pointer). If a counter read is detected, the kernel zeros the
process’ registers (% rax and % rdx in the x86 example) to
match the new (overflowed) contents of the performance
counter. Once resumed, the program will behave as if the
interrupt, context switch and overflow had occurred imme-
diately prior to the read of the performance counter.

LiMiT uses both kernel and userspace support. Due to the
kernel modifications necessary in the context swapping
subsection, LiMiT is partially implemented as a kernel
patch. This patch adds support to the Linux kernel for the
context swapping and atomicity violation detection/correc-
tion features used by the LiMiT access method. The kernel
patch also adds several kernel calls to configure monitoring.
LiMiT also includes a userspace library which serves as an
interface to the kernel. The library includes functions to
configure and read the performance counters.

LiMiT has several usage modes, including a C API. In this
mode, one includes limit.h in the source code and links
against the LiMiT library. The API provides a set of func-
tions to set up/close hardware performance counters as well
as read them. Routines for reading are implemented in-line
to decrease latency to 5 instructions.

Usage Example: Measurement of branch mis-prediction
during a function call:

// Compile with: gce -O3 -o hello hello.c -1limit -1dl
#include <limit.h>
#include <stdint.h>
#include <stdio.h>
#define strl “Hello World, Hello World, Hello World”
#define str2
“HELLOWORLDHELLOWORLDHELLOWORLDHELLOWO”
const char* testStr = strl; //Also try str2
uint64_t uppersFound = 0, lowersFound = 0;
void function_to_ watch(void) {
size_t i;
const char* ¢ = testStr;
while (*¢ 1= 0) {
if (isupper(*c))
uppersFound++;
else if (islower(*c))
lowersFound++;
CH;

}

int main(void) {

uint64__t br_last, brm__last, ¢, br, brm;

size_t i;

Iprof _init(3, EV_CYCLES, EV_BRANCH,

EV_BRANCH_ MISS);

for (i=1; i<=30; i++) {
Iprof(2, br__last);
Iprof(3, brm__last);
function_ to_ watch( );

//Optional:
// sample just before call
// Do something

Iprof(1, ¢); //Get cumulative
cycles
Iprofd(2, br, br_last); //Get delta
branches
Iprofd(3, brm, //Get delta mispreds
brm__last);

printf(“At Cycle: %7lu, Br Misprediction: %lf\n”, ¢,
100.0*((double)brm)/br);

Iprof__close( );
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Comparison to Sampling

Sampling is typically used in two ways: interrupt based or
by polling. In interrupt based sampling, interrupts are trig-
gered when a predetermined event such as number of
committed instructions reaches a predetermined count.
These interrupts are received by the OS and passed on to the
application. In polling based sampling, the counters are
precisely read out once out of every N times a code region
is executed to reduce overhead. While both approaches can
have low overheads, there are a number of situations in
which neither approach works well.

For example, FIG. 4 contains a critical section from
MySQL which accounts for 30% of MySQL’s overall criti-
cal section time. Let us say that we are interested in
measuring time spent in critical sections using interrupt
based sampling. If K of the N samples were in critical
section we would extrapolate that K/N of the total time was
spent in critical sections. However, there are several com-
plications with this approach. In the above example, a
sampling interrupt routine which fires during the critical
section, would have difficultly determining whether or not a
lock is held because the locks are executed based on the if
conditional preceding the lock.

An alternative to interrupt sampling is to use precise
access methods intermittently. In this case, explicit perfor-
mance counter reads would have be used every time a lock
is acquired or released. To reduce overhead, performance
counter reads could execute only once out of every N times
the region is entered, and the total time could be extrapolated
from this measurement. While this method is effective in
reducing overall overhead, the overheads for each precise
read remain high. As a result, large perturbation is intro-
duced immediately before and after the region of interest
when measurement is actually occurring. We would there-
fore expect measurements for small regions to be inflated.
We observe this effect during Case Study A in FIG. 6(b).

In many of these situations in which sampling or heavy-
weight precision present difficulties, ad hoc solutions are
possible. However as the case studies demonstrate, a low
overhead, precise measurement like LiMiT is sometimes the
right tool for the job.

Comparison to PAPI and perf_event

For years, PAPI has been the standard library to write
cross platform performance monitoring tools. As a library, it
relies on kernel interface support; traditionally it has used
perfmon2 on Linux. In contrast, perf_event is the newest
Linux kernel interface. It is touted to be faster and more
featureful than perfmon2 and will thus eventually replace it.
However, due to its relative youth, library support for
perLevent remains poor, placing a burden on the user but
yielding better speeds as there is no library overhead.

Any performance counter readout call (be it PAPI or
LiMiT) will cost some number of cycles. To examine this
overhead, we construct a short benchmark which reads a
counter configured to count three events (cycles, branches
and branch misses) 107 times each. With this high number of
iterations, we can report the wall time for comparison of the
overheads and compute the cost of each readout call. The
results are presented in Table 1, provided in FIG. 12, which
shows speedups of LiMiT, perf event, and PAPI (107 reads
of 3 counters) plus LiMiT’s speedup over PAPI and perf
event respectively. On the Xeon 5550-based system, the
average for LiMiT’s five instruction readout code is 37.14
cycles. Since LiMiT does not require a system call for each
sample, it is substantially faster compared to PAPI-C (by
92x) and perf_event (by 23x).

Below, we instrument MySQL to examine locking,
unlocking and critical section timing (setup described in
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detail below). FIG. 6(b) shows that using LiMiT incurs a
42% cycle increase over uninstrumented execution. When
the same instrumentation is performed using PAPI, a 745%
user space cycle overhead is introduced and 97% is incurred
with perf_event. Both PAPI’s and perl.event’s actual over-
heads, however, are much larger since over 90% of their
overheads occur in kernel space (as shown in Table 1) but
are not counted in FIG. 6(b). As a result, we would expect
both PAPI and perlevent instrumentation to perturb execu-
tion more than LiMiT making the results virtually unusable.

Overheads also directly affects usability. We attempted to
instrument and measure modern cloud workloads such as
Firefox, MySQL and Apache with both LiMiT and PAPI.
Firefox was unresponsive to input with PAPI, while it
operated with no discernible slowdown when instrumented
with LiMiT. We also measured that Apache served 9,246
requests per second with LiMiT instrumentation and 9,276
requests per second without instrumentation. These minor
changes in speed demonstrate LiMiT’s low overhead.

Comparison to RDTSC Measurements

Using rdtsc, the read time stamp counter instruction on
x86 architectures, is de rigeur in userspace lightweight
measurement. The time stamp counter is a free running
counter present on all x86 machines. It simply counts bus
cycles (uncore cycles for modern Intel processors) and most
operating systems allow programs direct access to it. Since
rdtsc is simple and lightweight, programmers will often use
it to measure the time spent in short or long regions of code
or to judge the effect of code changes on performance.
LiMiT, however, offers capabilities that are superior to plain
rdtsc: aside from offering a variety of countable events
besides bus cycles, LiMiT provides process isolation which
allows each process to shield its measurements from other
processes’ direct interference. While one could apply many
of LiMiT’s techniques to rdtsc, this does not occur in
practice so we compare against rdtsc without any such
additions.

To examine the effect of process isolation, we construct a
simple microbenchmark which executes non-memory
operations across multiple threads on an 8 core system,
allowing the operating system to schedule them onto cores.
FIG. 5(a) shows a typical rdtsc usage example, and FIG.
5(b) shows how process isolation in LiMiT prevents other
threads and processes from directly affecting event counts.
The rdtsc instruction has no such capability. We then com-
pute the average amount of time each operation takes using
both rdtsc and LiMiT. We would expect the performance of
each operation to degrade as resource sharing increases.
There should be little or no performance degradation with 8
or fewer threads, mild degradation from 8 to 16 threads as
SMT is utilized then a little more performance degradation
above 16 threads as threads are swapped in and out. The data
presented in FIG. 5(b) confirm these expectations when
using LiMiT. rdtsc, however, incorrectly reports massive,
linearly increasing performance degradation above 16
threads as a result of its lack of process isolation.

Case Studies

Based on three case studies with LiMiT using unsealed,
production workloads we put forth several recommenda-
tions for architecture researchers.

In the first case study, we measure synchronization
regions in production applications (Apache, MySQL and
Firefox) as well as the PARSEC benchmark suite. The
measurements show that Firefox and MySQL spend nearly
a third of the execution time in synchronization which is 10x
more than the synchronization time in PARSEC bench-
marks. These results indicate that synchronization is used
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differently in production system applications than tradition-
ally-studied scientific/numerical applications and architects
must be aware of these differences. Performing similar
measurements with PAPI-C show inflated synchronization
times due to high measurement overheads, drastically
changed cycle count ratios and increased instrumentation
overheads from 42% to over 745%. Some workloads such as
Firefox could not even run properly with PAPI-C because of
the high overheads.

The next case study examines the interaction of programs
with the Linux kernel via popular library calls. This inter-
action has not received much attention because of the
difficulty in running modern, unsealed web workloads on
full-system simulators. The investigation reveals that pro-
duction applications spend a significant fraction of execution
cycles in dynamically linked libraries and operating system
calls.

Further, we find that routines in these two segments show
distinctly different microarchitectural performance charac-
teristics than userspace behavior.

The third and final case study demonstrates LiMiT’s
breadth of utility by conducting longitudinal studies of
modern software evolution. By examining the evolution of
locking behaviors over several versions of MySQL, we
investigate if there has been a return on investment in
parallelizing the software for multicores. This study illus-
trates how the utility of precise counting goes beyond
traditional applications in architecture, compilers and OS,
and that well-architected performance counting systems can
have wide and deep impact on several computer science
disciplines.

Case Study A: Locking in Web Workloads

Usage patterns of computers have changed drastically
over the past decade. Modern computer users live in the
cloud. These users spend most of the their time in web
browsers—either on a traditional desktop or mobile
device—which moves computation to backend servers. As a
result, there are two separate and extremely important work-
loads in the web model: the frontend, consisting of web
browsers and Javascript engines, and the backend, consist-
ing of HTTP servers, script interpreters and database
engines. Further, the workloads of these applications have
also changed Often web pages rely far more on Javascript
than ever before and database operations are no longer well
modeled by traditional transactional benchmarks, often
favoring scalability and speed over data security and trans-
actional atomicity and durability.

We briefly characterize the synchronization behavior of
several popular web technologies. Specifically, this study
aims to answer the following questions: (1) Is synchroniza-
tion a concern in web workloads and what are the locking
usage patterns? (2) What future architecture directions can
optimize web workloads? For comparison purposes, we also
measure and analyze the PARSEC benchmark. As a numeri-
cal workload, PARSEC is likely representative of traditional
(scientific computing) notions of parallel programming and
may be different from web technologies.

Necessity of LiMiT—There are three features offered by
LiMiT which enable this study: precise instrumentation,
process isolation and low-overhead reads, not all of which
are simultaneously offered by other technologies. Precision
is necessary because we are capturing very short regions of
executions—lock acquires/releases and critical sections—
which are likely to be missed by sampling techniques.
Process isolation (which is not offered by the traditional
rdtsc) is required since we are operating in a multi-threaded
environment with I/0, so processes are likely to be swapped
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in and out often. Finally, LiMiT’s low-overhead counter
readout routine is required to prevent large perturbation
from skewing results. To further examine LiMiT’s lowered
overhead, we will compare results obtained with LiMiT to
results obtained with PAPI.

Experimental Setup—To gain insight into modern web
workloads, we examine the following software and input
sets:

Firefox: A popular, open-source web browser, we ran
Mozilla Firefox version 3.6.8. We visited and interacted with
the top 15 most visited sites, as ranked by Alexa. Addition-
ally, we used two web apps from Google, Gmail and Google
Reader, two applications which rely heavily on AJAX,
asynchronous Javascript and XML.

Apache: The Apache HTTP server is, according to Net-
craft, the most popular HTTP sever with 56% market share
as of August 2010. We evaluated the latest stable version,
2.2.16, using the included “ab” (Apache Benchmark) tool to
fetch a simple static page. A total of 250 k requests were
served with 256 requests being requested concurrently.
Because we look only at static loads, the results will indicate
a best-case scenario for Apache.

MySQL: MySQL is the traditional database server of
choice for websites. The most recent stable version is
MySQL 5.1.50 Community Server, which we evaluated. To
exercise it’s functionality, we ran the “sql-bench” bench-
marking scripts included with MySQL’s source code.

PARSEC: The PARSEC benchmark suite is a set of
parallel applications largely targeting RMS workloads. We
executed seven of the multithreaded benchmarks: blacksc-
holes, swaptions, fluidanimate, yips, x264, canneal and
streamcluster.

We instrumented each of these applications using LiMiT
to track their critical sections and locking behaviors. Spe-
cifically, we collected information on the number of cycles
spent acquiring and releasing locks, and time spent with
locks held.

The charts in FIGS. 6 and 7A-F summarize the collected
data. FIG. 6 shows an overview of synchronization over-
heads and critical section times. In particular, FIG. 6 pres-
ents a comparison of synchronization and critical section
timing for various popular applications and the PARSEC
benchmark suite along with execution times for MySQL.
Results obtained with PAPI are inflated due to instrumen-
tation overheads. We also see that PAPI instrumentation
increases userspace cycle counts by more than 745% com-
pared to LiMiT’s 42% increase. We also note that Firefox
(being an interactive program) could not execute with PAPI
instrumentation. Execution time is computed as the total
number of cycles in all threads, lock and unlocking times as
all time spent in pthread_mutex_lock and pthread_mutex-
_unlock in all threads. Lock held time, however, is defined
as summation of the amount of time each thread has at least
one lock held; if more than one lock is held, time is not
double-counted.

These data show that this behavior varies a great deal
between the applications. FIGS. 7A-F contain histograms of
locking and unlocking overheads (latency of lock acquire
and release) and times spent in critical sections. We break
down this data by both dynamic locks (number of lock
acquires during execution) and static locks (number of lock
instances observed during execution), revealing insights
about lock usage patterns. We note that many critical section
times are very short, comparable in cycle counts to lock
acquisition times. From this data, we make several obser-
vations:
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The histograms in FIGS. 7A-F indicate that the manner in
which each application uses locks varies. PARSEC, for
instance, holds locks for very short amounts of time, in stark
contrast to MySQL and Firefox (see Table 2, provided in
FIG. 13, which shows locking-related averages). This is
likely because many of PARSEC’s applications parallelize
nicely, e.g., using data parallelism and static assignment. We
note that the vast majority of PARSEC’s static locks are
observed in one benchmark fluidanimate. Without this
benchmark, the number of static locks per thread per appli-
cation drops to 0.575. These data indicate that scientific and
web workloads have significant difference in synchroniza-
tion behavior. The applications other than PARSEC, how-
ever, are interactive and must respond to events as they
occur. Since this makes static assignment impossible,
threads must interact more often, requiring more synchro-
nization.

The previous point is further supported by the number of
locks shown in Table 2. Highly interactive applications like
Firefox and MySQL require significantly higher number of
locks. PARSEC is likely able to use only barrier-like con-
structs to synchronize computation.

Based on this data, we will attempt to answer the ques-
tions set forth. To answer the first question, about locking
patterns in web workloads, we observe that synchronization
is a mixed bag in web applications. Some workloads, like
Apache, are likely to be very parallel and scale easily.
MySQL does not fit into this category as it does not scale as
easily. Additionally, Firefox has far more synchronization
overheads then one would expect. Based on personal expe-
rience with Mozilla code, we suspect this is a result of
difficulties in parallelizing legacy “spaghetti” code which is
likely to have many side effects which must be isolated from
other threads.

Implications for Architects

The second question—How are architects affected by
these results and what future directions would best support
the web?—bears further analysis. There are several inter-
esting points:

1. A new benchmark suite of web software may be
necessary for new web-centric architecture research. SPEC
has several versions of the “SPECweb” benchmark; future
studies should include comparisons. However, many of the
applications we have reviewed and other important cloud
workloads are not part of SPECweb, including Firefox,
Javascript, website supporting databases (nontransactional
workloads), server caching and load balancing.

2. The data show locking overheads can be nontrivial
compared to critical section times. Since locking/unlocking
overheads can be 8% to 13% of overall cycles, speedups in
this range may be possible with architectural/software tech-
niques for streamlining lock acquisition. Further, we observe
that the static lock distributions differ from the dynamic lock
distributions, suggesting that one may be able to statically
determine which locks are likely to be contended and which
are likely to be held for many cycles.

3. Critical section times for MySQL are relatively large.
In particular, over half of the lock instances have average
lock hold times around 8,000 cycles (although they are
locked less often). These represent segments of code which
will not scale well. These regions are prime targets for
microarchitectural optimization. If they can be sped up,
parallel performance and scalability of MySQL will
improve.
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Case Study B: Kernel/Userspace Overheads in Runtime
Library

The next case study is aimed at examining the interaction
of programs with the Linux kernel via popular library calls
and understanding their impact on program performance A
prior study has shown that kernel calls can negatively impact
performance by polluting branch predictors. Are there other
on-chip structures that are affected by kernel calls? To what
degree are modern applications affected by their kernel
interaction? Is it possible to obtain fine-grained information
about execution that can be tracked back to originating
function calls? The goal is to use LiMiT to study common
library functions’ behaviors in both userspace and kernel
space.

Necessity of LiMiT—There are two alternatives to using
LiMiT for collecting this data.

First, simulation can be used to study the interaction of
user and kernel code. Full system multiprocessor simulators
can model the effect of system interaction and can shed light
on effect of library calls but can be prohibitively slow
without scaling workloads. Although LiMiT cannot achieve
the accuracy and detail level of simulation, it can be used to
rapidly gather precise information and coarsely locate prob-
lem regions.

The second option is sampling with external interrupts.
This style of sampling provides an interrupt every N events
at which point the sampling interrupt can analyze the
application’s execution state. In this study, however, we
must determine which library functions use processor
resources and the purpose of the function calls. For instance,
we would like to know whether memcpy is manipulating
program data or copying data for I/O. Obtaining this data in
both user and kernel space is difficult for sampling-based
methods as each sample interrupt must also run a stack trace
(often from the kernel stack all the way back to and through
the user stack) to identify the library entry point. We know
of no existing sampling tool that is able to track kernel
function usage back to the calling userspace function. While
theoretically possible for sampling, LiMiT makes this
approach downright easy. With LiMiT, we read counters at
the entry and exit points of functions in each category, so all
events occurring between the function entry and exit, includ-
ing all functions called from within the function, are counted
towards that function. For example, if pwrite calls memcpy
internally or the kernel executes some locking functions
during a read system call, any microarchitectural events
resulting from the memcpy or kernel locking will count
towards pwrite or read rather than memory or locking
categories.

To examine the effects of kernel code, we intercept and
instrument functions in libc and pthreads. During calls to
these libraries, we count cycles, [.3 cache misses and
instruction cache stalls in user space and kernel space
separately. After collecting data, we aggregate the data from
each function into three separate categories: /O, memory
and pthreads. 1/0 contains functions such as read, write and
printf whereas memory has functions like malloc and mem-
set. Pthreads contains all of the commonly used synchroni-
zation functions. We look at two important systems appli-
cations, Apache and MySQL, using the workloads described
above.

The results of this study are shown in FIGS. 8-10. FIG. 8,
which shows various user space and kernel space micro-
architectural events occurring in categories of library func-
tions, reveals potential inefficiencies. First, we observe that
MySQL spends over 10% of its execution cycles in kernel
1/0O functions. Apache spends a comparable amount of time,
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but also spends a large amount of time in user I/O code.
Overall, in fact, Apache spends the majority (about 61%) of
its cycles in library code. Thus, comparing userspace to
kernel, we see that kernel code behaves very differently than
userspace code. Looking at cache information, FIG. 8(b)
shows that kernel I/O experiences far more cache misses per
kiloinstruction than userspace code (note the different scale
for Apache in kernel space). The last chart, FIG. 8(c) helps
explains further, revealing extremely poor instruction cache
utilization in kernel mode, especially in /O functions.

FIGS. 9 and 10 show the cycles per instruction (CPI) and
last level cache misses for the worst performing functions in
libe plus aggregates of userspace code, kernel code, library
functions and normal program code (CIP for various library
functions executed by MySQL are listed here, sorted by
number of calls). We see that in many cases, code in the
dynamically linked library performs worse than typical
program code. The same is true of kernel code to an even
greater extent. Although performance is particularly poor for
functions like floor and getpid, they are not called often and
thus do not affect overall speed. These data show that kernel
code does not perform as well as userland code and that
several functions perform very poorly, especially in terms of
cache misses. In particular, the math function floor performs
very poorly (due largely to cache misses) though it does not
contain a kernel call. Fortunately, MySQL does not call it
often (241 times compared with 4.4e8 times for memcpy).
The infrequent calls and last level cache miss results suggest
that that poor temporal locality and prefetching of math-
ematical constants or code in libm may be to blame for the
poor performance.

As indicated in FIG. 10, L3 cache misses in various
dynamically linked library functions show that a handful of
library functions account for a large portion of all the cache
misses. Many of these functions result in kernel calls which
suffer from abnormally high cache miss rates, as seen in
FIG. 8b6. The MySQL benchmark executed for these data
uses a database growing up to 45 MB in size, relative to 8
MB of CPU cache.

Implications for Architects

The first important result from this data is that system
applications have a lot of kernel interaction and their behav-
ior in kernel regions is markedly different from userspace.
As a result, userspace-only simulation misses potentially
important information. Additionally, there are two key
observations in the above data which indicate potential
avenues for optimization:

4. The Apache results show the importance of I/O opti-
mization. Apache spends much time interacting with the
kernel, incurring significant overheads. Hardware support to
allow Apache (and similar programs) to circumvent the
kernel to do its I/O could drastically decrease its latency and
increase throughput.

5. Poor instruction cache behavior in kernel mode may
indicate that the processor is unable to prefetch kernel
instructions before interrupts occur. It should be possible for
a hardware prefetcher to determine the system call number
and prefetch the necessary upcoming instruction code,
avoiding I-Cache misses.

6. Finally, this LiMiT-obtained data has identified several
problem points in real applications with unsealed workloads.
With LiMiT, a process that would have taken months using
simulators took only 3 days. If micro-benchmarks can be
designed to capture these bottlenecks, they can be used in
full system simulation. This style of combining LiMiT’s



US 9,483,376 B2

17

precise event counter approach with detailed simulation may
be necessary for quantitative architecture research in the
cloud era.

Case Study C: Longitudinal Study of Locking Behavior in
MySQL

Embarking on parallelization is often a risky investment
with little guarantee of performance improvements due to
the difficulties in writing multithreaded code. Many organi-
zations that have legacy sequential codes are hesitant to
invest in parallelization without quantitative models that can
be used to predict return of investment on parallelization.
LiMiT offers capabilities to build such a model.

In this case study, we use LiMiT to examine the benefits
of adapting software to multicores over multiple versions
spanning years. To examine software development progress,
we examine several versions of MySQL, an extremely
popular database management system. Gartner Group esti-
mates that 50% of IT organizations had MySQL deploy-
ments in 2008, making MySQL a very common workload.
As an open source product, we are also able to access its
source code from many versions going back to 2004.
Releases from 2004 on are beneficiaries of increased market
penetration of multicore machines, increasing pressure on
MySQL to use multithreading for performance

Goals—We will attempt to answer the following ques-
tions using behavioral information: (1) Has synchronization
in MySQL changed through versions? (2) Has the amount of
time in critical sections changed? We will use these ques-
tions to judge if MySQL developers have improved at
multicore development since the widespread availability of
multicore systems.

Necessity of LiMiT—As in case study A, we are exam-
ining fine-grained program sections: lock acquires/releases
and critical sections. To avoid perturbation, interference
from multiple threads and error introduced by sampling, we
require LiMiT’s low-overhead reads, process isolation and
precision. Sampling is a poor option for the same reasons as
given in case study A.

To answer these questions, we intercept mysqld calls to
the pthread library’s locking routines to insert timing instru-
mentation. All versions of MySQL were compiled and
executed on identical systems, so they all use the same,
recent version of pthreads. As input, we run the “sql-bench”
benchmark suite supplied with MySQL.

The results of this study are shown in FIG. 11, which
shows a history of synchronization in MySQL. The results
indicate that synchronization efficiency has increased since
the 4.1 series, first introduced in 2004. FIG. 11(a) examines
overall times in synchronization and critical sections. FIG.
11(b) rehashes the critical section results from the previous
chart and overlays the average lock held time. Finally, FIG.
11(c) examines the number of static and dynamic locks
observed during execution. There are several interesting
points to note:

1. Average Lock Held Times: MySQL developers have
decreased the total amount of time spent with locks held
while simultaneously increasing the average amount of time
each lock is held. This implies that the functionality of
multiple critical sections has been combined. For low-
contention critical sections, this increases overall efficiency
by avoiding lock overheads.

2. Lock Granularity: The number of static and dynamic
locks have both decreased. This implies that—on average—
lock granularity has increased. Although this could increase
contention, it has not come at that cost, so this granularity
shift has likely been carefully tuned.
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3. Alpha Version: MySQL 6, the alpha version, is an
outlier with respect to recent versions. This is likely because
it has not yet been optimized with respect to locking and new
features have been implemented in overly conservative
fashions.

To answer the initial questions, both synchronization
overheads and critical section times have decreased over
time. These performance improvements clearly show that
developers have become more skilled, likely a result of
multicore availability as parallel machines were not com-
monly available to hobbyist hackers before 2004.

Implication for Architects (#7): While this is primarily a
software engineering/project management study—and the
first study we know of to use precise performance counters
for software engineering—there is a very important take
away point here for computer architects: there is a poten-
tially broader consumer base for on-chip performance coun-
ter data beyond computer architects, OS and compiler writ-
ers. Computer architects should take this into consideration
when designing future hardware monitoring systems.
Broadly, this means that monitors should be optimized not
to capture just the common execution cases but also uncom-
mon cases which are interest in domains such as software
engineering and security.

Hardware Enhancements for Better Precise Performance
Counting

We now describe modest hardware modifications, based
on the experiences with LiMiT, that can increase the preci-
sion and utility of performance counters even further. Spe-
cifically, we describe: (1) a destructive performance counter
read instruction for lower overheads; (2) 64-bit counters, and
instructions that can read and write to the full 64 bits to avoid
overflows; and (3) integration of counter selection into the
read instruction. The combination of these three features
would allow single instruction counter readouts and resets.

Precise performance measurement does not appear to be
an intended application for performance counter architec-
tures today. These modest modifications to existing perfor-
mance monitoring hardware can reduce the complexity and
overheads of precise counting with tools like LiMiT. The
operations described below will reduce LiMiT’s read routine
from five instructions down to one and reduce the overhead
of frequent counter usage patterns. Such low overheads
would encourage programs to self-monitor and adapt to
changing conditions.

Enhancement #1: 64-bit Reads and Writes—LiMiT’s
overflow handling is necessitated by a lack of full 64-bit read
and write support. With 31-bit counters, the counters can
overtflow every 0.72 seconds, but with 64-bit support they
would require centuries to overflow. Until such support can
be added LiMiT will have a vital role in low overhead
precise performance measurement.

Enhancement #2: Destructive Reads—When characteriz-
ing code segments, a difference in counts between two
points in the program is often required. A destructive read
instruction—one that zeros the counter after reading it—
could eliminate the currently necessary subtraction in many
cases when counters are used.

Enhancement #3: Combined Reads—Currently, the x86
performance counter read instruction requires that the % ecx
register contain the number of the counter to read. Were this
integrated into the instruction as an immediate, another
instruction would be eliminated.

CONCLUSION

The disclosed embodiments include the following
aspects: (1) We have described a lightweight, precise inter-
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face to performance counters on contemporary hardware. (2)
We have conducted case studies to demonstrate the utility of
precise monitoring to architects. Based on data collected
with LiMiT, we offer new insights on program behavior
which were not possible with existing tools. (3) Based on the
experience with LiMiT, we describe hardware support to
decrease the cost of accesses to performance counters.

To continue having real world impact, architects must be
engineers, designing machines to accelerate a wide variety
of new applications and usage models. As scientists, archi-
tects also need to conduct rigorous, reproducible research
studies. While this latter goal can be achieved with simula-
tion technology available today, it has been challenging for
simulators to keep pace with rapid changes in the software
landscape. Tools such as LiMiT help architects keep pace
with new software, potentially using the insights gained to
develop fast, robust, representative microbenchmarks for
simulation based studies.

As a demonstration of the usefulness of precise perfor-
mance monitoring capabilities offered by LiMiT, we con-
ducted three case studies on current web workloads. These
studies lead us to the following conclusions:

1. A new benchmark suite is recommended for research in
computer architectures for the cloud era because traditional
multithreaded benchmarks have different execution charac-
teristics than multithreaded applications frequently used
today.

2. Web applications tend to have many very short critical
sections which could be sped up with architectural support
for lighter weight synchronization. Since the total overhead
of lock acquisition and release is about 13% and 8% for
Firefox and MySQL respectively, speedups in that range
may be possible.

3. Dynamically linked libraries and kernel code suffer
from poor microarchitectural performance and also make up
substantial portions of run time for system applications.
Further research to enhance this performance could signifi-
cantly accelerate web workloads.

4. Performance counters have far wider applicability than
just computer architecture (e.g., software engineering) and
architects designing performance counter systems should
consider other applications.

These insights were made possible by precise, low-over-
head performance monitoring capabilities provided by the
LiMiT tool. These features allow monitoring of parallel
programs more precisely than existing sampling based tools.
In LiMiT we revisited and re-architected existing perfor-
mance counter access methodologies (which had not been
revised in the past decade). Specifically, we used novel
kernel/user space cooperative techniques to allow user space
readouts of performance counters. As a result, LiMiT is at
least an order of magnitude faster than its existing state-of-
the-art alternative, and reduces instrumented execution over-
heads significantly. In short, LiMiT can read virtualized
counters in less than 12 nanoseconds, allowing precise
measurements at finer granularities than have ever been
studied.

Much of LiMiT’s implementation complexity and execu-
tion cost was due to suboptimal hardware support. LiMiT
can be further optimized with minimal additional hardware
support. Specifically, we propose the following ISA changes
for future architectures: [0145] (1) increasing the counter
size to 64-bit and allowing full 64-bit reads and writes; (2)
including a destructive read instruction; and (3) integrating
counter selection into the read instruction. These three
simple modifications would drastically reduce complexity
and allow single instruction readouts.
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Certain embodiments described above may include elec-
tronic hardware, software, or a combination of both. Soft-
ware may be embodied on a computer-readable medium,
such as a disk or memory, which may be non-transitory.

Other embodiments, extensions, and modifications of the
ideas presented above are comprehended and should be
within the reach of one versed in the art upon reviewing the
present disclosure. Accordingly, the scope of the disclosed
subject matter in its various aspects should not be limited by
the examples presented above. The individual aspects of the
disclosed subject matter, and the entirety of the disclosed
subject matter should be regarded so as to allow for such
design modifications and future developments within the
scope of the present disclosure. The disclosed subject matter
can be limited only by the claims that follow.

What is claimed is:

1. A method comprising:

storing a value of a performance counter of a micropro-

cessor in a first memory location in response to detec-
tion of a swap operation for a monitored process
executed by the microprocessor; and

upon detection of a swap back operation for the monitored

process:

setting the performance counter to a restored value
determined based on whether the value stored in the
first memory location exceeds a defined overtlow
threshold, and

setting a counter output register, configured to hold
content of the performance counter, to a zero value
in response to a determination that at least one
performance counter reading instruction, to read the
content of the performance counter, was being
executed during detection of the swap operation for
the monitored process, and further in response to a
determination that the value stored in the first
memory location exceeds the defined overflow
threshold.

2. The method of claim 1, wherein setting the perfor-
mance value to the restored value determined based on
whether the value stored in the first memory location
exceeds the defined overflow threshold comprises one of:

setting the performance counter to the stored value in the

first memory location when the stored value in the first
memory location does not exceed the defined overflow
threshold; or

setting the performance counter to a zero value and

incrementing a second memory location, storing an
accumulated overflowed value of the performance
counter for the monitored process, by the stored value
of the performance counter in the first memory location
when the stored value of the performance counter in the
first memory location exceeds the defined overflow
threshold.

3. The method of claim 1, wherein the at least one
performance counter reading instruction executed by the
monitored process comprises:

outputting the value of the performance counter to the

counter output register;

reading the accumulated overflowed value from the sec-

ond memory location; and

adding the accumulated overflowed value to the value of

the performance counter.

4. The method of claim 3, wherein the at least one
performance counter reading instruction executed by the
monitored process further comprises storing, in another
register, a parameter identifying a specific counter to be
read.
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5. The method of claim 3, wherein the instructions for
outputting the value of the performance counter to the
counter output register comprise an instruction including a
parameter identifying a specific counter to be read.

6. The method of claim 1, wherein the defined overflow
threshold is equal to 2™, where N is a maximum bit length
which can be restored to the performance counter.

7. The method of claim 1, wherein the at least one
performance counter reading instruction executed by the
monitored process is detected by analyzing the instruction
pointer register of the microprocessor.

8. The method of claim 1, wherein the performance
counter measures micro-architectural events occurring in the
Mmicroprocessor.

9. A system for performing precise microprocessor per-
formance counter readings, the system comprising:

a microprocessor comprising one or more performance

counters; and

memory storing an operating system for controlling the

microprocessor, the operating system including a ker-
nel, wherein the kernel is configured to perform opera-
tion comprising:
storing a value of a performance counter from the one
or more performance counters of the microprocessor
in a first memory location in response to detection of
a swap operation for a monitored process executed
by the microprocessor; and
upon detection of a swap back operation for the moni-
tored process:
setting the performance counter to a restored value
determined based on whether the value stored in
the first memory location exceeds a defined over-
flow threshold, and
setting a counter output register, configured to hold
content of the performance counter, to a zero value
in response to a determination that at least one
performance counter reading instruction, to read
the content of the performance counter, was being
executed during detection of the swap operation
for the monitored process, and further in response
to a determination that the value stored in the first
memory location exceeds the defined overflow
threshold.

10. The system of claim 9, wherein setting the perfor-
mance value to the restored value determined based on
whether the value stored in the first memory location
exceeds the defined overflow threshold comprises one of:

setting the performance counter to the stored value in the

first memory location when the stored value in the first
memory location does not exceed the defined overflow
threshold; or

setting the performance counter to a zero value and

incrementing a second memory location, storing an
accumulated overflowed value of the performance
counter for the monitored process, by the stored value
of the performance counter in the first memory location
when the stored value of the performance counter in the
first memory location exceeds the defined overflow
threshold.

11. The system of claim 9, wherein the at least one
performance counter reading instruction executed by the
monitored process comprises:

outputting the value of the performance counter to the

counter output register;

reading the accumulated overflowed value from the sec-

ond memory location; and
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adding the accumulated overflowed value to the value of

the performance counter.

12. The system of claim 11, wherein the at least one
performance counter reading instruction executed by the
monitored process further comprises storing, in another
register, a parameter identifying a specific counter to be
read.

13. The system of claim 9, wherein the defined overtflow
threshold is equal to 2!, where N is a maximum bit length
which can be restored to the performance counter.

14. A non-transitory computer readable media storing a
set of instructions executable on a microprocessor that,
when executed, causes operations comprising:

storing a value of a performance counter of the micro-

processor in a first memory location in response to
detection of a swap operation for a monitored process
executed by the microprocessor; and

upon detection of a swap back operation for the monitored

process:

setting the performance counter to a restored value
determined based on whether the value stored in the
first memory location exceeds a defined overtlow
threshold, and

setting a counter output register, configured to hold
content of the performance counter, to a zero value
in response to a determination that at least one
performance counter reading instruction, to read the
content of the performance counter, was being
executed during detection of the swap operation for
the monitored process, and further in response to a
determination that the value stored in the first
memory location exceeds the defined overflow
threshold.

15. A method comprising:

loading an instruction pointer register with a value indi-

cating a destructive performance counter read instruc-
tion;

obtaining a parameter from a first register of a micropro-

cessor to select a performance counter of the micro-
processor to read for the destructive performance coun-
ter read instruction;

reading content of the selected performance counter indi-

cated by the parameter read from the first register, and
loading the content read from the selected performance
counter into at least a second register; and

setting the selected performance counter to a zero value.

16. The method of claim 15, wherein loading the content
read from the selected performance counter into the at least
the second register comprises loading a lower portion of
counter value bits of the performance counter into at least
the second register and loading an upper portion of the
counter value bits of the performance counter into a third
register.

17. A microprocessor configured to execute destructive
performance counter reads, the microprocessor comprising:

a processing unit for executing instructions; and

memory, accessible by the processing unit, for storing the

instructions that, when executed on the processing unit,

cause operations comprising:

loading an instruction pointer register with a value
indicating a destructive performance counter read
instruction;

obtaining a parameter from a first register of the
microprocessor to select a performance counter of
the microprocessor to read for the destructive per-
formance counter read instruction;
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reading content of the selected performance counter
indicated by the parameter read from the first regis-
ter, and loading the content read from the selected
performance counter into at least a second register;
and

setting the selected performance counter to a zero
value.

18. The microprocessor of claim 17, wherein loading the
content read from the selected performance counter into the
at least the second register comprises loading a lower
portion of counter value bits of the performance counter into
at least the second register and loading an upper portion of
the counter value bits of the performance counter into a third
register.

19. A non-transitory computer readable media storing a
set of instructions executable on a microprocessor that,
when executed, causes operations comprising:

loading an instruction pointer register with a value indi-

cating a destructive performance counter read instruc-
tion;
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obtaining a parameter from a first register of the micro-
processor to select a performance counter of the micro-
processor to read for the destructive performance coun-
ter read instruction;

reading content of the selected performance counter indi-
cated by the parameter read from the first register, and
loading the content read from the selected performance
counter into at least a second register; and

setting the selected performance counter to a zero value.

20. The computer readable media of claim 19, wherein
loading the content read from the selected performance
counter into the at least the second register comprises
loading a lower portion of counter value bits of the perfor-
mance counter into at least the second register and loading
an upper portion of the counter value bits of the performance
counter into a third register.
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